Reciprocity-driven Sparse Network Formation

نویسنده

  • Konstantinos P. Tsoukatos
چکیده

A resource exchange network is considered, where exchanges among nodes are based on reciprocity. Peers receive from the network an amount of resources commensurate with their contribution. We assume the network is fully connected, and impose sparsity constraints on peer interactions. Finding the sparsest exchanges that achieve a desired level of reciprocity is in general NP-hard. To capture near– optimal allocations, we introduce variants of the Eisenberg–Gale convex program with sparsity penalties. We derive decentralized algorithms, whereby peers approximately compute the sparsest allocations, by reweighted l1 minimization. The algorithms implement new proportional-response dynamics, with nonlinear pricing. The trade-off between sparsity and reciprocity and the properties of graphs induced by sparse exchanges are examined. Index Terms Network formation, proportional-response, nonlinear pricing, sparse interactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling the potential of Sand and Dust Storm sources formation using time series of remote sensing data, fuzzy logic and artificial neural network (A Case study of Euphrates basin)

Due to the differences between the visible and thermal infrared images, the combination of these two types of images leads to better understanding of  the characteristics of targets and the environment. Thermal infrared images are really in distinguishing targets from the background based on the radiation differences and  land surface temperature (LST) calculation. However, their spatial resolu...

متن کامل

Evolution in Groups: A deeper look at synaptic cluster driven evolution of deep neural networks

A promising paradigm for achieving highly efficient deep neural networks is the idea of evolutionary deep intelligence, which mimics biological evolution processes to progressively synthesize more efficient networks. A crucial design factor in evolutionary deep intelligence is the genetic encoding scheme used to simulate heredity and determine the architectures of offspring networks. In this st...

متن کامل

The evolution of generalized reciprocity on social interaction networks.

Generalized reciprocity (help anyone, if helped by someone) is a minimal strategy capable of supporting cooperation between unrelated individuals. Its simplicity makes it an attractive model to explain the evolution of reciprocal altruism in animals that lack the information or cognitive skills needed for other types of reciprocity. Yet, generalized reciprocity is anonymous and thus defenseless...

متن کامل

A Game Theoretic Model for the Formation of Navigable Small-World Networks --- the Balance between Distance and Reciprocity

Kleinberg proposed a family of small-world networks to explain the navigability of large-scale real-world social networks. However, the underlying mechanism that drives real networks to be navigable is not yet well understood. In this paper, we present a game theoretic model for the formation of navigable small world networks. We model the network formation as a game in which people seek for bo...

متن کامل

Rice Classification and Quality Detection Based on Sparse Coding Technique

Classification of various rice types and determination of its quality is a major issue in the scientific and commercial fields associated with modern agriculture. In recent years, various image processing techniques are used to identify different types of agricultural products. There are also various color and texture-based features in order to achieve the desired results in this area. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1705.10122  شماره 

صفحات  -

تاریخ انتشار 2017